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1.1 Let M be a di�erentiable manifold of dimension m. Assume that U , U ′ are two open subsets of
M with U ∩ U ′ ̸= ∅, equipped with coordinate charts ϕ : U → V ⊂ R

m and ϕ′ : U ′ → V ′ ⊂ R
m.

Let (x1, . . . , xm) and (y1, . . . , ym) be the corresponding coordinates on U and U ′, respectively;
recall that each coordinate function xi : U → R is de�ned so that

xi = x̄i ◦ ϕ,

where x̄i : Rm → R is the projection on the i-th coordinate (equivalently, for any q ∈ U , xi(q)
is equal to the i-th component of the vector ϕ(q) ∈ R

m); similarly for yi (with ϕ′ in place of ϕ).

(a) Prove that the functions
ỹi = yi ◦ ϕ−1, i = 1, . . . ,m

are di�erentiable functions on ϕ(U ∩ U ′) ⊂ R
m (Hint: Use the assumption on the smooth-

ness of transition functions on M). Show also that

ỹi(x1(p), . . . , xm(p)) = yi(p) for all p ∈ U ∩ U ′

Remark. We usually refer to the function ỹi as the expression of the coordinate function

yi with respect to the (x1, . . . , xm) coordinate system on U ∩ U ′.

(b) Show that the coordinate tangent vectors
{

∂
∂xi

}m

i=1
and

{
∂
∂yi

}m

i=1
satisfy at every point on

U ∩ U ′′

∂

∂xi
= ∂iỹ

j ◦ ϕ · ∂

∂yj
.

Find a similar relation between the coordinate covectors {dxi}mi=1 and {dyi}mi=1.

Solution. (a) The de�nition of the coordinate functions yi : U ′ → R, 1 ⩽ i ⩽ m, implies that

ỹi = yi ◦ ϕ−1 = x̄i ◦ (ϕ′ ◦ ϕ−1). (1)

Our assumption that M is a di�erentiable manifold implies that the transition map

ϕ′ ◦ ϕ−1 : ϕ(U ∩ U ′) ⊂ R
m → ϕ′(U ∩ U ′) ⊂ R

m

is a C∞ homeomorphism between two open subsets of Rm. Moreover, the coordinate projection map
x̄i : Rm → R is a C∞ map. Thus, the composition of the function de�ning ỹi in (1) must be a C∞

function.
The fact that x̄i : Rm → R is the projection to the i-th Cartesian coordinate is equivalent to the

statement that, for any point z ∈ R
m,

z = (x̄1(z), . . . , x̄m(z)).

Thus, for any p ∈ U ∩ U ′,

ϕ(p) = (x̄1 ◦ ϕ(p), . . . , x̄m ◦ ϕ(p)) = (x1(p), . . . , xm(p))
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and, therefore,
yi(p) = ỹi ◦ ϕ(p) = ỹ(x1(p), . . . , xm(p))

(b) Recall that, in any local system of coordinates (y1, . . . , ym), the coordinate vector �elds ∂
∂yi

are

de�ned so that the result of their action on the coordinate functions yj is

∂

∂yi
(yj) = δji , i, j = 1, . . . ,m. (2)

At any point p ∈ U ∩ U ′, both sets of tangent vectors
{

∂
∂xi

}m

i=1
and

{
∂
∂yi

}m

i=1
constitute a basis

for TpM; as a result, there exist functions λj
i : U ∩ U ′ → R, i, j = 1, . . . ,m, such that, for any

i = 1, . . . ,m:
∂

∂xi
= λj

i

∂

∂xj
(3)

(recall that repeated indices are assumed to be summed). Using (3) to compute ∂
∂xi (y

k), together
with (2), we therefore obtain

∂

∂xi
(yk) = λj

i

∂

∂yj
(yk) = λk

i . (4)

Using the expression
ỹk(x1(·), . . . , xm(·)) = yk(·),

we can also calculate (after applying the chain rule) that

∂

∂xi
(yk)(p) = ∂iỹ

k ◦ ϕ(p). (5)

Thus, returning to (3) and using (4)�(5), we obtain

∂

∂xi
= ∂iỹ

j ◦ ϕ · ∂

∂yj
. (6)

Similarly, using the fact that both {dxi}mi=1 and {dyi}mi=1 form a basis of T ∗
pM for any p ∈ U ∩U ′,

we have
dyi = f i

jdx
j (7)

for some functions f i
j : U ∩ U ′ → R, i, j = 1, . . . ,m. We can therefore compute

∂

∂xj
(yi) = dyi

( ∂

∂xj

)
= f i

kdx
k
( ∂

∂xj

)
= f i

kδ
k
j = f i

j .

However, using (6), we also have the following expression for ∂
∂xj (y

i):

∂

∂xj
(yi) = ∂j ỹ

k ◦ ϕ · ∂

∂yk
(yi) = ∂j ỹ

k ◦ ϕ · δki = ∂j ỹ
i ◦ ϕ.

Therefore, combining the above two relations and returning to (7), we infer:

dyi =
(
∂j ỹ

i ◦ ϕ
)
· dxj.
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1.2 Construct a smooth atlas (not necessarily maximal) on the unit sphere

S
n = {x ∈ R

n+1 : ∥x∥ = 1}.

Solution. An example of an atlas on Sn consists of the collection {(U (k)
± , ϕ

(k)
± )}n+1

k=1 where:

� The open sets U (k)
+ ,U (k)

− ⊂ S
n, k = 1, . . . , n+ 1 de�ned by

U (k)
+ =

{
x = (x1, . . . , xn+1) ∈ R

n+1 : ∥x∥ = 1 and xk > 0
}
,

U (k)
− =

{
x = (x1, . . . , xn+1) ∈ R

n+1 : ∥x∥ = 1 and xk < 0
}

(note that every point x ∈ S
n has at least one non-zero coordinate and thus belongs to

at least one of the sets U (k)
± ). Note that U (k)

+ and U (k)
− correspond, respectively, to the

north and south hemispheres of Sn in the direction of the xk-axis (i.e. with the equator
corresponding to Sn ∩ {xk = 0}).

� The homeomorphisms ϕ
(k)
± : U (k)

± → Bn
1 ⊂ R

n (where Bn
1 = {y ∈ R

n : ∥y∥ < 1}) are
de�ned as the projections on the coordinate hyperplane orthogonal to the xk-axis, i.e.

ϕ
(k)
± (x1, . . . , xk−1, xk, xk+1, . . . xn+1) = (x1, . . . , xk−1, xk+1, . . . , xn+1).

(it is easy to check that they are continuous, 1− 1 and onto). Note that the inverse maps

(ϕ
(k)
± )−1 : Bn

1 → U (k)
± take the form

(ϕ
(k)
+ )−1(y1, . . . , yn) = (y1, . . . , yk−1,+

√√√√1−
n∑

i=1

(yi)2, yk, . . . , yn), (8)

(ϕ
(k)
− )−1(y1, . . . , yn) = (y1, . . . , yk−1,−

√√√√1−
n∑

i=1

(yi)2, yk, . . . , yn). (9)

For any numbers k1, k2 ∈ {1, . . . , n + 1} and any signs ϵ1, ϵ2 ∈ {+,−}, the image of the set

U (k1)
ϵ1 ∩ U (k2)

ϵ2 via the chart ϕ
(k1)
ϵ1 satis�es

Ω(k1,k2)
ϵ1,ϵ2

.
= ϕ(k1)

ϵ1

(
U (k1
ϵ1

∩ U (k2
ϵ2

)
=



Bn
1 ∩ {xk2 > 0} if k1 > k2 and ϵ2 = +,

Bn
1 ∩ {xk2 < 0} if k1 > k2 and ϵ2 = −,

Bn
1 ∩ {xk2−1 > 0} if k1 < k2 and ϵ2 = +,

Bn
1 ∩ {xk2−1 < 0} if k1 < k2 and ϵ2 = −,

Bn
1 if k1 = k2 and ϵ1 = ϵ2,

∅ if k1 = k2 and ϵ1 ̸= ϵ2.

In view of the above explicit formulas for ϕ
(k)
± and (ϕ

(k)
± )−1, it is straightforward to verify that

the transition maps ϕ
(k2)
ϵ2 ◦ (ϕ(k1)

ϵ1 )−1 are smooth (in fact, real analytic) homeomorphisms from

Ω
(k1,k2)
ϵ1,ϵ2 ⊂ R

n to Ω
(k2,k1)
ϵ1,ϵ2 ⊂ R

n. Thus, {(U (k)
± , ϕ

(k)
± )}n+1

k=1 is a smooth atlas on S
n (albeit not

maximal).
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1.3 Let (M, g) be a Riemannian manifold and let (x1, . . . , xn) and (y1, . . . , yn) be two systems of
coordinates around a point p ∈ M. Let gij be the components of the metric g in the (x1, . . . , xn)
coordinates, while g̃ij are the components of g with respect to (y1, . . . , yn). Show that

g̃ij =
∂xa

∂yi
∂xb

∂yj
gab,

where, in the above expressions, the coordinate functions xγ are considered as functions of
(y1, . . . , yn) (see Ex. 1.1). Express the Euclidean metric on R2 \ {0} in polar coordinates.

Solution. Using the relations from Ex. 1.1 between the coordinate tangent vectors
{

∂
∂xi

}n

i=1

and
{

∂
∂yi

}n

i=1
, we can easily calculate:

g̃ij = g
( ∂

∂yi
,
∂

∂yj
)
= g

(∂xa

∂yi
· ∂

∂xa
,
∂xb

∂yj
· ∂

∂xb

)
=

∂xa

∂yi
∂xb

∂yj
g
( ∂

∂xa
,
∂

∂xb

)
=

∂xa

∂yi
∂xb

∂yj
gab.

Note that we made use of the fact that, at any p ∈ M, g|p is bilinear on TpM × TpM and

therefore, for any �nite set of vector �elds {Xα}α, {Yβ}β and functions {f (1)
α }α, {f (2)

β }β : M →
R, we have:

g
(∑

α

f (1)
α Xα,

∑
β

f
(2)
β Yβ

)
=

∑
α

∑
β

f (1)
α f

(2)
β g(Xα, Yβ).

Another way to obtain the same identity is by noting that gij and g̃ij are the components of g
with respect to the coordinate bases {dxi⊗dxj}ni,j=1 and {dyi⊗dyj}ni,j=1, respectively (these are
the coordinate bases of bilinear functionals on TpM×TpM associated to each of the coordinate
systems (x1, . . . , xn) and (y1, . . . , yn)). Therefore, we have

g = gabdx
a ⊗ dxb = g̃ijdy

i ⊗ dyj.

Using the relations from Ex. 1.1 between the coordinate covectors dxa and dyj, we can also
calculate:

g = gabdx
a ⊗ dxb = gab

∂xa

∂yi
dyi ⊗ ∂xb

∂yj
dyj =

(
gab

∂xa

∂yi
∂xb

∂yj

)
dyi ⊗ dyj

The above two relations now imply (since {dyi⊗dyj}ni,j=1 forms a basis of T ∗
pM⊗T ∗

pM at any
p ∈ M) that

g̃ij = gab
∂xa

∂yi
∂xb

∂yj
.

The polar coordinates (r, θ) on R2\0 are related to the Cartesian coordinates (x1, x2) as follows:

x1 = r cos θ, x2 = r sin θ.

Thus, we can compute:

dx1 = cos θdr − r sin θdθ, dx2 = sin θdr + r cos θdθ.

Page 4



EPFL� Spring 2025

SOLUTIONS: Series 1

Di�erential Geometry III:

Riemannian geometry
G. Moschidis

19 Feb. 2025

The Euclidean metric gE therefore takes the form

gE = dx1 ⊗ dx1 + dx2 ⊗ dx2 =

= (cos θdr − r sin θdθ)⊗ (cos θdr − r sin θdθ) + (sin θdr + r cos θdθ)⊗ (sin θdr + r cos θdθ)

= cos2 θ(dr ⊗ dr)− r sin θ cos θ(dr ⊗ dθ + dθ ⊗ dr) + r2 sin2 θ(dθ ⊗ dθ)

+ sin2 θ(dr ⊗ dr) + r sin θ cos θ(dr ⊗ dθ + dθ ⊗ dr) + r2 cos2 θ(dθ ⊗ dθ)

= dr ⊗ dr + r2dθ ⊗ dθ

1.4 Let M be a di�erentiable manifold and F : M → R
N be an immersion. The metric g induced

on M by the Euclidean metric on RN is de�ned by the relation

g(X, Y )
.
= ⟨dF (X), dF (Y )⟩RN for all tangent vectorsX, Y on M.

(a) Show that, in any local coordinate system (x1, . . . , xn) on M, the components of g are
given by

gij = δab
∂F a

∂xi

∂F b

∂xj
.

(b) (Surface of revolution) Let γ : (0, 1) → R
2 be a smooth curve parametrized with unit

speed (i.e.
〈
dγ
du
(u), dγ

du
(u)

〉
= 1). Let γ(u) =

(
X(u), Y (u)

)
be the representation of γ in

the standard Cartesian coordinates on R
2 and assume that X(u) > 0 for all u ∈ (0, 1).

Consider the surface of revolution S ⊂ R
3 obtained by rotating the curve γ around the

y-axis; this surface is parametrized by (u, θ) ∈ (0, 1)× [0, 2π) via the map

Ψ(u, θ) =
(
X(u) cos θ, Y (u), X(u) sin θ

)
.

Express the induced metric on S from the Euclidean metric on R3 in the (u, θ) coordinates.

Solution. (a) It is straightforward to calculate

gij = g
( ∂

∂xi
,

∂

∂xj

)
=

〈
dF

( ∂

∂xi

)
, dF

( ∂

∂xj

)〉
RN

=
〈∂F
∂xi

,
∂F

∂xj

〉
RN

= δab
∂F a

∂xi

∂F b

∂xj
,

where F = (F 1, . . . , FN) is the expression of F in the Cartesian coordinates of RN .

(b) Let g be the induced metric on S. For the embedding map Ψ : (0, 1)× [0, 2π) → R
3 we can

readily calculate:

∂Ψ

∂u
(u, θ) =

(
Ẋ(u) cos θ, Ẏ (u), Ẋ(u) sin θ

)
,
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∂Ψ

∂θ
(u, θ) =

(
−X(u) sin θ, 0, X(u) cos θ

)
.

Thus, using the formula from part (a) for the components of g in the (u, θ) coordinate system,
we calculate:

guu = δab
∂Ψa

∂u

∂Ψb

∂u
= (Ẋ(u))2 cos2 θ + (Ẏ (u))2 + (Ẋ(u))2 sin2 θ

= (Ẋ(u))2 + (Ẏ (u))2,

guθ = δab
∂Ψa

∂u

∂Ψb

∂θ
= Ẋ(u)X(u) cos θ sin θ + 0− Ẋ(u)X(u) cos θ sin θ

= 0,

gθθ = δab
∂Ψa

∂θ

∂Ψb

∂θ
= (X(u))2 sin2 θ + 0 + (X(u))2 cos2 θ

= (X(u))2.

The assumption that γ is parametrized by unit speed translates to the condition that

(Ẋ(u))2 + (Ẏ (u))2 = 1.

Therefore

g = guudu⊗ du+ guθ(du⊗ dθ + dθ ⊗ du) + gθθdθ ⊗ dθ

= du⊗ du+
(
X(u)

)2
dθ ⊗ dθ.

1.5 Let (M, g) be a Riemannian manifold and x1, . . . , xn a system of local coordinates on an open
subset U ⊂ M associated to a coordinate chart ϕ : U → R

n. Show that the volume

Vol(U) =

�
ϕ(U)

√
det(gij) dx

1 . . . dxn

is independent of the choice of coordinates.

Solution. Let ϕ′ : U → ϕ′(U) ⊂ Rn be a (possibly) di�erent coordinate chart, with associated
coordinates (y1, . . . , yn). Let g̃ij be the components of g with respect to the yi coordinates.
Our aim is to show that�

ϕ(U)

√
det(gij) ◦ ϕ−1 dx1 . . . dxn =

�
ϕ′(U)

√
det(g̃ij) ◦ (ϕ′)−1 dy1 . . . dyn.

Let us make a few observations:
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� The map Y = ϕ′ ◦ ϕ−1 is a smooth homeomorphism from ϕ(U) ⊂ R
n to ϕ′(U) ⊂ R

n (as
a transition map for our manifold). Notice that Y (x̄1, . . . , x̄n) =

(
Y 1(x̄), . . . , Y n(x̄)

)
is

simply the expression of the (y1, . . . , yn) coordinates on U as functions of the (x1, . . . , xn)
coordinates (see Ex. 1.1).

� Let us denote for a moment by G : ϕ(U) → R and G̃ : ϕ′(U) → R the functions
√

det(gij)◦
ϕ−1 and

√
det(g̃ij)◦(ϕ′)−1, respectively. In matrix notation, the formula from Ex. 1.3 (after

changing the roles of x and y there) can be reexpressed as

[g] = ([dY ] ◦ ϕ)T · [g̃] · ([dY ] ◦ ϕ),

where

[g] =

g11 . . . g1n
...

. . .

gn1 . . . gnn

 , [g̃] =

g̃11 . . . g̃1n
...

. . .

g̃n1 . . . g̃nn


and

[dY ] =

 ∂Y 1

∂x1 . . . ∂Y 1

∂xn

...
. . .

∂Y n

∂x1 . . . ∂Y n

∂xn

 .

Therefore: √
det[g] ◦ ϕ−1 =

√
det

(
[dY ]T · ([g̃] ◦ ϕ−1) · [dY ]

)
= | det[dY ]|

√
det[g̃] ◦ ϕ−1

= | det[dY ]|
√
det[g̃] ◦ (ϕ′)−1 ◦ Y.

� The classical change of variables formula for integrals on domains in Rn gives us that, for
any continuous function f : ϕ(U) → R, its integral transforms under the map Y : ϕ(U) →
ϕ′(U) by the relation:�

ϕ(U)

f(x) dx1 . . . dxn =

�
ϕ′(U)

f ◦ Y −1(y)
1

| det[dY ]| ◦ Y −1(y)
dy1 . . . dyn.

Combining the above observations, we obtain:�
ϕ(U)

√
det[g] ◦ ϕ−1(x) dx1 . . . dxn =

�
ϕ′(U)

√
det[g] ◦ ϕ−1 ◦ Y −1(y)

1

| det[dY ]| ◦ Y −1(y)
dy1 . . . dyn

=

�
ϕ′(U)

√
det[g] ◦ (ϕ′)−1(y)

1

| det[dY ]| ◦ Y −1(y)
dy1 . . . dyn

=

�
ϕ′(U)

| det[dY ] ◦ Y −1|
√

det[g̃] ◦ (ϕ′)−1(y)
1

| det[dY ]| ◦ Y −1(y)
dy1 . . . dyn

=

�
ϕ′(U)

√
det[g̃] ◦ (ϕ′)−1(y) dy1 . . . dyn.
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